Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Acta Neuropathol ; 147(1): 70, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598053

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Assuntos
Doença de Alzheimer , Fibronectinas , Idoso , Animais , Humanos , Doença de Alzheimer/genética , Fibronectinas/genética , Variação Genética/genética , Gliose , Peixe-Zebra
2.
Curr Protoc ; 4(3): e1014, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506436

RESUMO

This article presents a practical guide to mass spectrometry-based data-independent acquisition and label-free quantification for proteomics analysis applied to cerebrospinal fluid, offering a robust and scalable approach to probing the proteomic composition of the central nervous system. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Cerebrospinal fluid sample collection and preparation for mass spectrometry analysis Basic Protocol 2: Mass spectrometry sample analysis with data-independent acquisition Support Protocol: Data-dependent mass spectrometry and spectral library construction Basic Protocol 3: Analysis of mass spectrometry data.


Assuntos
Proteoma , Proteômica , Humanos , Proteômica/métodos , Proteoma/análise , Espectrometria de Massas/métodos , Proteínas do Líquido Cefalorraquidiano/química
3.
Nat Genet ; 56(4): 605-614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514782

RESUMO

The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer's disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer's disease, schizophrenia, educational attainment and Parkinson's disease loci.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Locos de Características Quantitativas/genética , Variação Genética/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
4.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418088

RESUMO

Detecting structural variants (SVs) in whole-genome sequencing poses significant challenges. We present a protocol for variant calling, merging, genotyping, sensitivity analysis, and laboratory validation for generating a high-quality SV call set in whole-genome sequencing from the Alzheimer's Disease Sequencing Project comprising 578 individuals from 111 families. Employing two complementary pipelines, Scalpel and Parliament, for SV/indel calling, we assessed sensitivity through sample replicates (N = 9) with in silico variant spike-ins. We developed a novel metric, D-score, to evaluate caller specificity for deletions. The accuracy of deletions was evaluated by Sanger sequencing. We generated a high-quality call set of 152,301 deletions of diverse sizes. Sanger sequencing validated 114 of 146 detected deletions (78.1%). Scalpel excelled in accuracy for deletions ≤100 bp, whereas Parliament was optimal for deletions >900 bp. Overall, 83.0% and 72.5% of calls by Scalpel and Parliament were validated, respectively, including all 11 deletions called by both Parliament and Scalpel between 101 and 900 bp. Our flexible protocol successfully generated a high-quality deletion call set and a truth set of Sanger sequencing-validated deletions with precise breakpoints spanning 1-17,000 bp.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Sequenciamento Completo do Genoma/métodos
5.
medRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405911

RESUMO

Background: Both genetic variants and epigenetic features contribute to the risk of Alzheimer's disease (AD). We studied the AD association of CpG-related single nucleotide polymorphisms (CGS), which act as the hub of both the genetic and epigenetic effects, in Hispanics decedents and generalized the findings to Non-Hispanic Whites (NHW) decedents. Methods: First, we derived the dosage of the CpG site-creating allele of multiple CGSes in each 1 KB window across the genome and we conducted a sliding window association test with clinical diagnosis of AD in 7,155 Hispanics (3,194 cases and 3,961 controls) using generalized linear mixed models with the adjustment of age, sex, population structure, genomic relationship matrix, and genotyping batches. Next, using methylation and bulk RNA-sequencing data from the dorsolateral pre-frontal cortex in 150 Hispanics brains, we tested the cis- and trans-effects of AD associated CGS on brain DNA methylation to mRNA expression. For the genes with significant cis- and trans-effects, we checked their enriched pathways. Results: We identified six genetic loci in Hispanics with CGS dosage associated with AD at genome-wide significance levels: ADAM20 (Score=55.2, P= 4.06×10 -8 ), between VRTN (Score=-19.6, P= 1.47×10 -8 ) and SYNDIG1L (Score=-37.7, P= 2.25×10 -9 ), SPG7 (16q24.3) (Score=40.5, P= 2.23×10 -8 ), PVRL2 (Score=125.86, P= 1.64×10 -9 ), TOMM40 (Score=-18.58, P= 4.61×10 -8 ), and APOE (Score=75.12, P= 7.26×10 -26 ). CGSes in PVRL2 and APOE were also genome-wide significant in NHW. Except for ADAM20 , CGSes in all the other five loci were associated with Hispanic brain methylation levels (mQTLs) and CGSes in SPG7, PVRL2, and APOE were also mQTLs in NHW. Except for SYNDIG1L ( P =0.08), brain methylation levels in all the other five loci affected downstream RNA expression in the Hispanics ( P <0.05), and methylation at VRTN and TOMM40 were also associated with RNA expression in NHW. Gene expression in these six loci were also regulated by CpG sites in genes that were enriched in the neuron projection and synapse (FDR<0.05). Conclusions: We identified six CpG associated genetic loci associated with AD in Hispanics, harboring both genetic and epigenetic risks. However, their downstream effects on mRNA expression maybe ethnic specific and different from NHW.

6.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260431

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.

7.
Alzheimers Dement ; 20(3): 1988-1999, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183363

RESUMO

BACKGROUND: Alzheimer's disease (AD) biomarkers can help differentiate cognitively unimpaired (CU) individuals from mild cognitive impairment (MCI) and dementia. The role of AD biomarkers in predicting cognitive impairment and AD needs examination. METHODS: In 628 CU individuals from a multi-ethnic cohort, amyloid beta (Aß)42, Aß40, phosphorylated tau-181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) were measured in plasma. RESULTS: Higher baseline levels of p-tau181/Aß42 ratio were associated with an increased risk of incident dementia. A biomarker pattern (with elevated Aß42/Aß40 but low p-tau181/Aß42) was associated with decreased dementia risk. Compared to CU, participants who developed MCI or dementia had a rapid decrease in this protective biomarker pattern reflecting AD-specific pathological change. DISCUSSION: Elevated levels of AD biomarker p-tau181/Aß42, by itself or combined with a low Aß42/Aß40 level, predicts clinically diagnosed AD. Individuals with a rapid change in these biomarkers may need close monitoring for the potential downward trajectory of cognition. HIGHLIGHTS: We discuss a multi-ethnic, urban community study of elderly individuals. The study consisted of a longitudinal assessment over 6 years with repeated clinical assessments. The study used blood-based biomarkers as predictors of mild cognitive impairment and Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Peptídeos beta-Amiloides , Washington , Proteínas tau , Disfunção Cognitiva/diagnóstico , Envelhecimento , Biomarcadores
8.
Alzheimers Dement ; 20(3): 2058-2071, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215053

RESUMO

INTRODUCTION: Clinical research in Alzheimer's disease (AD) lacks cohort diversity despite being a global health crisis. The Asian Cohort for Alzheimer's Disease (ACAD) was formed to address underrepresentation of Asians in research, and limited understanding of how genetics and non-genetic/lifestyle factors impact this multi-ethnic population. METHODS: The ACAD started fully recruiting in October 2021 with one central coordination site, eight recruitment sites, and two analysis sites. We developed a comprehensive study protocol for outreach and recruitment, an extensive data collection packet, and a centralized data management system, in English, Chinese, Korean, and Vietnamese. RESULTS: ACAD has recruited 606 participants with an additional 900 expressing interest in enrollment since program inception. DISCUSSION: ACAD's traction indicates the feasibility of recruiting Asians for clinical research to enhance understanding of AD risk factors. ACAD will recruit > 5000 participants to identify genetic and non-genetic/lifestyle AD risk factors, establish blood biomarker levels for AD diagnosis, and facilitate clinical trial readiness. HIGHLIGHTS: The Asian Cohort for Alzheimer's Disease (ACAD) promotes awareness of under-investment in clinical research for Asians. We are recruiting Asian Americans and Canadians for novel insights into Alzheimer's disease. We describe culturally appropriate recruitment strategies and data collection protocol. ACAD addresses challenges of recruitment from heterogeneous Asian subcommunities. We aim to implement a successful recruitment program that enrolls across three Asian subcommunities.


Assuntos
Doença de Alzheimer , População norte-americana , Humanos , Doença de Alzheimer/genética , Projetos Piloto , Asiático/genética , Canadá , Fatores de Risco
9.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260408

RESUMO

Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aß42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience.

10.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050142

RESUMO

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Assuntos
Doença de Alzheimer , Resiliência Psicológica , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Cognição , Neurônios/metabolismo , RNA , Splicing de RNA/genética , Proteínas tau/metabolismo
11.
medRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662203

RESUMO

Background: We investigated systemic biochemical changes in Alzheimer's disease (AD) by investigating the relationship between circulating plasma metabolites and both clinical and biomarker-assisted diagnosis of AD. Methods: We used an untargeted approach with liquid chromatography coupled to high-resolution mass spectrometry to measure exogenous and endogenous small molecule metabolites in plasma from 150 individuals clinically diagnosed with AD and 567 age-matched elderly without dementia of Caribbean Hispanic ancestry. Plasma biomarkers of AD were also measured including P-tau181, Aß40, Aß42, total tau, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP). Association of individual and co-expressed modules of metabolites were tested with the clinical diagnosis of AD, as well as biologically-defined AD pathological process based on P-tau181 and other biomarker levels. Results: Over 4000 metabolomic features were measured with high accuracy. First principal component (PC) of lysophosphatidylcholines (lysoPC) that bind to or interact with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (AHA) was associated with decreased risk of AD (OR=0.91 [0.89-0.96], p=2e-04). Restricted to individuals without an APOE ε4 allele (OR=0.89 [0.84-0.94], p= 8.7e-05), the association remained. Among individuals carrying at least one APOE ε4 allele, PC4 of lysoPCs moderately increased risk of AD (OR=1.37 [1.16-1.6], p=1e-04). Essential amino acids including tyrosine metabolism pathways were enriched among metabolites associated with P-tau181 levels and heparan and keratan sulfate degradation pathways were associated with Aß42/Aß40 ratio reflecting different pathways enriched in early and middle stages of disease. Conclusions: Our findings indicate that unbiased metabolic profiling can identify critical metabolites and pathways associated with ß-amyloid and phosphotau pathology. We also observed an APOE ε4 dependent association of lysoPCs with AD and that biologically-based diagnostic criteria may aid in the identification of unique pathogenic mechanisms.

12.
medRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745545

RESUMO

Structural variations (SVs) are important contributors to the genetics of numerous human diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to challenges in accurately detecting SVs. Here, we analyzed whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP, N=16,905 subjects) and identified 400,234 (168,223 high-quality) SVs. We found a significant burden of deletions and duplications in AD cases (OR=1.05, P=0.03), particularly for singletons (OR=1.12, P=0.0002) and homozygous events (OR=1.10, P<0.0004). On AD genes, the ultra-rare SVs, including protein-altering SVs in ABCA7, APP, PLCG2, and SORL1, were associated with AD (SKAT-O P=0.004). Twenty-one SVs are in linkage disequilibrium (LD) with known AD-risk variants, e.g., a deletion (chr2:105731359-105736864) in complete LD (R2=0.99) with rs143080277 (chr2:105749599) in NCK2. We also identified 16 SVs associated with AD and 13 SVs associated with AD-related pathological/cognitive endophenotypes. Our findings demonstrate the broad impact of SVs on AD genetics.

13.
medRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645764

RESUMO

INTRODUCTION: Alzheimer's disease (AD) biomarkers can help differentiate cognitively unimpaired (CU) individuals from mild cognitive impairment (MCI) and dementia. The role of AD biomarkers in predicting cognitive impairment and AD needs examination. METHODS: In 628 CU individuals from a multi-ethnic cohort, Aß42, Aß40, phosphorylated tau-181 (P-tau181), glial fibrillary acid protein (GFAP), and neurofilament light chain (NfL) were measured in plasma. RESULTS: Higher baseline levels of P-tau181/Aß42 ratio were associated with increased risk of incident dementia. A biomarker pattern (with elevated Aß42/Aß40 but low P-tau181/Aß42) was associated with decreased dementia risk. Compared to CU, participants who developed MCI or dementia had a rapid decrease in the biomarker pattern reflecting AD-specific pathological change. DISCUSSION: Elevated levels of AD biomarker P-tau181/Aß42, by itself or combined with a low Aß42/Aß40 level, predicts clinically diagnosed AD. Individuals with a rapid change in these biomarkers may need close monitoring for the potential downward trajectory of cognition.

14.
J Alzheimers Dis ; 95(1): 275-285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483004

RESUMO

BACKGROUND: Queries for the presence of cardiovascular and cerebrovascular risk factors are typically assessed through self-report. However, the reliability and validity of self-reported cardiovascular and cerebrovascular risk factors remain inconsistent in aging research. OBJECTIVE: To determine the reliability and validity of the most frequently self-reported vascular risk factors: hypertension, diabetes, and heart disease. METHODS: 1,870 individuals aged 65 years or older among African Americans, Caribbean Hispanics, and white non-Hispanic individuals were recruited as part of a community study of aging and dementia. We assessed the reliability, validity, sensitivity, specificity, and percent agreement of self-reported hypertension, diabetes, and heart disease, in comparison with direct measures of blood pressure, hemoglobin A1c (HbA1c), and medication use. The analyses were subsequently stratified by age, sex, education, and ethnic group. RESULTS: Reliability of self-reported hypertension, diabetes, and heart disease was excellent. Agreement between self-reports and clinical measures was moderate for hypertension (kappa: 0.58), good for diabetes (kappa: 0.76-0.79), and moderate for heart disease (kappa: 0.45) differing slightly by age, sex, education, and ethnic group. Sensitivity and specificity for hypertension was 88.6% -78.1%, for diabetes was 87.7% -92.0% (HbA1c ≥6.5%) or 92.7% -92.8% (HbA1c ≥7%), and for heart disease was 85.8% -75.5%. Percent agreement of self-reported was 87.0% for hypertension, 91.6% -92.6% for diabetes, and 77.4% for heart disease. CONCLUSION: Ascertainment of self-reported histories of hypertension, diabetes, and heart disease are reliable and valid compared to direct measurements or medication use.


Assuntos
Demência , Diabetes Mellitus , Cardiopatias , Hipertensão , Humanos , Autorrelato , Hemoglobinas Glicadas , Reprodutibilidade dos Testes , Diabetes Mellitus/epidemiologia , Hipertensão/epidemiologia , Envelhecimento , Cardiopatias/diagnóstico , Cardiopatias/epidemiologia , Fatores de Risco , Demência/diagnóstico , Demência/epidemiologia
15.
NPJ Regen Med ; 8(1): 33, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429840

RESUMO

Neurogenesis, crucial for brain resilience, is reduced in Alzheimer's disease (AD) that induces astroglial reactivity at the expense of the pro-neurogenic potential, and restoring neurogenesis could counteract neurodegenerative pathology. However, the molecular mechanisms promoting pro-neurogenic astroglial fate despite AD pathology are unknown. In this study, we used APP/PS1dE9 mouse model and induced Nerve growth factor receptor (Ngfr) expression in the hippocampus. Ngfr, which promotes neurogenic fate of astroglia during the amyloid pathology-induced neuroregeneration in zebrafish brain, stimulated proliferative and neurogenic outcomes. Histological analyses of the changes in proliferation and neurogenesis, single-cell transcriptomics, spatial proteomics, and functional knockdown studies showed that the induced expression of Ngfr reduced the reactive astrocyte marker Lipocalin-2 (Lcn2), which we found was sufficient to reduce neurogenesis in astroglia. Anti-neurogenic effects of Lcn2 was mediated by Slc22a17, blockage of which recapitulated the pro-neurogenicity by Ngfr. Long-term Ngfr expression reduced amyloid plaques and Tau phosphorylation. Postmortem human AD hippocampi and 3D human astroglial cultures showed elevated LCN2 levels correlate with reactive gliosis and reduced neurogenesis. Comparing transcriptional changes in mouse, zebrafish, and human AD brains for cell intrinsic differential gene expression and weighted gene co-expression networks revealed common altered downstream effectors of NGFR signaling, such as PFKP, which can enhance proliferation and neurogenesis in vitro when blocked. Our study suggests that the reactive non-neurogenic astroglia in AD can be coaxed to a pro-neurogenic fate and AD pathology can be alleviated with Ngfr. We suggest that enhancing pro-neurogenic astroglial fate may have therapeutic ramifications in AD.

16.
medRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131736

RESUMO

INTRODUCTION: The reliability and validity of self-reported cardiovascular and cerebrovascular risk factors remains inconsistent in aging research. METHODS: We assessed the reliability, validity, sensitivity, specificity, and percent agreement of self-reported hypertension, diabetes, and heart disease, in comparison with direct measures of blood pressure, hemoglobin A1c (HbA1c), and medication use in 1870 participants in a multiethic study of aging and dementia. RESULTS: Reliability of self-reported for hypertension, diabetes, and heart disease was excellent. Agreement between self-reports and clinical measures was moderate for hypertension (kappa: 0.58), good for diabetes (kappa: 0.76-0.79), and moderate for heart disease (kappa: 0.45) differing slightly by age, sex, education, and race/ethnic group. Sensitivity and specificity for hypertension was 88.6%-78.1%, for diabetes was 87.7%-92.0% (HbA1c > 6.5%) or 92.7%-92.8% (HbA1c > 7%), and for heart disease was 85.8%-75.5%. DISCUSSION: Self-reported history of hypertension, diabetes, and heart disease are reliable and valid compared to direct measurements or medication use.

17.
Ann Clin Transl Neurol ; 10(5): 744-756, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946865

RESUMO

OBJECTIVE: To compute penetrance and recurrence risk using a genome-wide PRS (including and excluding the APOE region) in families with Alzheimer's disease. METHODS: Genotypes from the National Institute on Aging Late-Onset Alzheimer's Disease Family-Based Study and a study of familial Alzheimer's disease in Caribbean Hispanics were used to compute PRS with and without variants in the 2 MB region flanking APOE. PRS was calculated in using clumping/thresholding and Bayesian methods and was assessed for association with Alzheimer's disease and age at onset. Penetrance and recurrence risk for carriers in highest and lowest PRS quintiles were compared separately within APOE-ε4 carriers and non-carriers. RESULTS: PRS excluding the APOE region was strongly associated with clinical and neuropathological diagnosis of AD. PRS association with AD was similar in participants who did not carry an APOE-ε4 allele (OR = 1.74 [1.53-1.91]) compared with APOE-ε4 carriers (1.53 [1.4-1.68]). Compared to the lowest quintile, the highest PRS quintile had a 10% higher penetrance at age 70 (p = 0.0006) and a 20% higher penetrance at age 80 (p < 10e-05). Stratifying by APOE-ε4 allele, PRS in the highest quintile was significantly more penetrant than the lowest quintile, both, within APOE-ε4 carriers (14.5% higher at age 80, p = 0.002) and non-carriers (26% higher at 80, p < 10e-05). Recurrence risk for siblings conferred by a co-sibling in the highest PRS quintile increased from 4% between the ages of 65-74 years to 39% at age 85 and older. INTERPRETATION: PRS can be used to estimate penetrance and recurrence risk in familial Alzheimer's disease among carriers and non-carries of APOE-ε4.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Penetrância , Teorema de Bayes , Fatores de Risco , Apolipoproteínas E/genética
18.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993746

RESUMO

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's Disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis. Co-immunoprecipitation of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA splicing proteins. ZCCHC17 knockdown results in widespread RNA splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4 dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.

19.
Alzheimers Dement ; 19(6): 2538-2548, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36539198

RESUMO

BACKGROUND: This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions. METHODS: We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results. We then used regression analysis, adjusting for local ancestry main effects and interactions with genotype, to refine the regions identified from admixture mapping. Finally, we leveraged in silico annotation and differential gene expression data to prioritize AD-related variants and genes. RESULTS: Admixture mapping identified two genome-wide significant loci on chromosomes 17p13.2 (p = 2.2 × 10-5 ) and 18q21.33 (p = 1.2 × 10-5 ). Our fine mapping of the chromosome 17p13.2 and 18q21.33 regions revealed several interesting genes such as the MINK1, KIF1C, and BCL2. DISCUSSION: Our ancestry-aware regression approach showed that AA individuals have a lower risk of AD if they inherited African ancestry admixture block at the 17p13.2 locus. HIGHLIGHTS: We identified two genome-wide significant admixture mapping signals: on chromosomes 17p13.2 and 18q21.33, which are novel in African American (AA) populations. Our ancestry-aware regression approach showed that AA individuals have a lower risk of Alzheimer's disease (AD) if they inherited African ancestry admixture block at the 17p13.2 locus. We found that the overall proportion of African ancestry does not differ between the cases and controls that suggest African genetic ancestry alone is not likely to explain the AD prevalence difference between AA and non-Hispanic White populations.


Assuntos
Doença de Alzheimer , Predisposição Genética para Doença , Humanos , Predisposição Genética para Doença/genética , Negro ou Afro-Americano/genética , Doença de Alzheimer/genética , Mapeamento Cromossômico/métodos , Genótipo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Cinesinas/genética , Proteínas Serina-Treonina Quinases/genética
20.
medRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38196599

RESUMO

PURPOSE: Few rare pathogenic variants have been identified in the 70+ genetic loci from genome wide association studies of late-onset Alzheimer's disease (AD), limiting research on underlying mechanisms, risk assessment, and genetic counseling. METHODS: Using genome sequencing data from 197 families in The National Institute on Aging Alzheimer's Disease Family Based Study (AD-FBS), and 214 families in The Estudio Familiar de la Influencia Genética en Alzheimer (EFIGA), we characterized rare coding variants predicted to highly damaging missense or loss of function variants (LoF) within known GWAS loci. RESULTS: Eight coding and one LoF variant segregated in 10 (5.1%) AD-FBS families and 16 coding and two LoF variants segregated in 18 (8.4%) EFIGA families. ABCA7 and AKAP9 contained the most damaging variants. In 51 (25.9%) of the AD-FBS and in 26 (12.1%) of the EFIGA families, APOE-ε4 was the only variant segregating with familial AD (fAD). Neither APOE-ε4 nor missense or LoF variants were found in 44.1% of the AD-FBS and 62.1% of the EFIGA families. CONCLUSIONS: Although rare variants were found in both family groups, many families had no gene variant segregating within the family, indicating that the genetic basis for AD has yet to be fully defined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...